

Welcome to Django Active Link’s documentation!

Contents:

	Django Active Link
	Documentation

	Quick start

	Settings

	TODO

	Running Tests

	Credits

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.6 (2019-05-26)

	0.1.5 (2018-05-25)

	0.1.4 (2018-04-07)

	0.1.3 (2018-02-18)

	0.1.2 (2018-01-07)

	0.1.1 (2017-10-11)

	0.1.0 (2017-07-10)

Django Active Link

[image: _images/django-active-link.svg]
 [https://badge.fury.io/py/django-active-link][image: Updates]
 [https://pyup.io/repos/github/valerymelou/django-active-link/][image: _images/django-active-link1.svg]
 [https://travis-ci.org/valerymelou/django-active-link][image: _images/badge.svg]
 [https://codecov.io/gh/valerymelou/django-active-link]The simplest way to highlight active links in your Django app.

Documentation

The full documentation is at https://django-active-link.readthedocs.io.

Quick start

Install Django Active Link:

pip install django-active-link

Add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'active_link',
 ...
)

To use the active_link template tag you need to load active_link_tags templatetags library:

{% load active_link_tags %}

To add an active CSS class to a link when the request path matches a given view just do something like this.

Menu item

You can even add the active class when the request path matches multiple views. Just pass the view names separated by a double pipe (||) as first argument to the active_link tag.

Menu Item

You can also use a custom CSS class:

Menu item

or:

Menu item

By default active_link will not perform a strict match. If you want to add the active class only in case of a strict match pass the strict argument to the tag:

Menu item

Replace view-name with the name of your view (including namespaces).

Settings

You can override the default active class and strict mode with the settings ACTIVE_LINK_CSS_CLASS and ACTIVE_LINK_STRICT.

	Key

	Description

	Default Value

	ACTIVE_LINK_CSS_CLASS

	Active class to use.

	active

	ACTIVE_LINK_STRICT

	Designates whether to perform a strict match or not.

	False

For more usage examples, please check the full documentation at https://django-active-link.readthedocs.io.

IMPORTANT: Django Active Link requires that the current request object is available in your template’s context. This means you must be using a RequestContext when rendering your template, and django.core.context_processors.request must be in your TEMPLATE_CONTEXT_PROCESSORS setting. See https://docs.djangoproject.com/en/dev/ref/templates/api/#subclassing-context-requestcontext for more information.

TODO

	Write the documentation

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install tox
(myenv) $ tox

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

At the command line:

$ easy_install django-active-link

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-active-link
$ pip install django-active-link

Add active_link to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'active_link',
 ...
)

That’s it. You can start using Django Active Link in your templates.

Usage

To use Django Active Link in a project, add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'active_link',
 ...
)

IMPORTANT: Django Active Link requires that the current request object is available in your template’s context. This means you must be using a RequestContext when rendering your template, and django.core.context_processors.request must be in your TEMPLATE_CONTEXT_PROCESSORS setting. See [the documentation](https://docs.djangoproject.com/en/dev/ref/templates/api/#subclassing-context-requestcontext) for more information.

To use the active_link template tag you need to load active_link_tags templatetags library:

{% load active_link_tags %}

To add an active CSS class to a link when the request path matches a given view just do something like this.

Menu item

You can even add the active class when the request path matches multiple views. Just pass the view names separated by a pipe (||) as first argument to the active_link tag.

Menu Item

You can also match views that take arguments. For example:

Menu item

Replace view-name with the name of your view (including namespaces).

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/valerymelou/django-active-link/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django Active Link could always use more documentation, whether as part of the
official Django Active Link docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/valerymelou/django-active-link/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-active-link for local development.

	Fork the django-active-link repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-active-link.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-active-link
$ cd django-active-link/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 active_link tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/valerymelou/django-active-link/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_active_link

Credits

Development Lead

	Valery Melou <me@valerymelou.com>

Contributors

	Paulo Reis <paulovitin@gmail.com>

History

0.1.6 (2019-05-26)

Important changes

	Silent error when view name not found

	Update test jobs on Travis CI

0.1.5 (2018-05-25)

	Minor improvements

0.1.4 (2018-04-07)

	Minor improvements

0.1.3 (2018-02-18)

	Minor improvements

0.1.2 (2018-01-07)

	Minor improvements

0.1.1 (2017-10-11)

	Minor improvements

0.1.0 (2017-07-10)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Active Link’s documentation!

 		
 Django Active Link

 		
 Documentation

 		
 Quick start

 		
 Settings

 		
 TODO

 		
 Running Tests

 		
 Credits

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.6 (2019-05-26)

 		
 0.1.5 (2018-05-25)

 		
 0.1.4 (2018-04-07)

 		
 0.1.3 (2018-02-18)

 		
 0.1.2 (2018-01-07)

 		
 0.1.1 (2017-10-11)

 		
 0.1.0 (2017-07-10)

_static/up-pressed.png

_static/up.png

_static/plus.png

